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ABSTRACT 

Friendly fire continues to be a major source of casualties on the modern 

battlefield.  The Vehicle Mounted Identification Friend or Foe (VMIFF) is a device 

designed to provide instantaneous feedback to the shooter identifying itself as 

friendly when interrogated by a friendly target laser designator or laser range 

finder.  Current prototypes provide an omni-directional near infrared signature 

visible through night vision devices but not thermal imagers, and therefore are 

only effective during night operations.  Thermal imagers require a 3–5 µm mid-

wave infrared (MWIR) signature.  The integration of a MWIR signature into 

VMIFF will add a daytime capability. 

A new generation of compact MWIR sources is emerging to meet 

demands from a range of spectroscopy and communications applications.  An 

evaluation was conducted on three commercially available thermal 

microradiators to determine suitability as MWIR signature generators for VMIFF 

applications.  Frequency response and angular irradiance measurements were 

made in both the 3–5 μm and 8–12 μm regions using single-pixel thermal 

detectors and thermal imaging cameras.  Based on data collected, a next-

generation VMIFF design incorporating a thermal signature is proposed. 
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I. BACKGROUND  

A. FRIENDLY FIRE 

War is a violent clash of interests between, or among, organized groups, 

characterized by the use of military force, with the objective of imposing one’s will 

on the enemy [1].  A key requirement to impose one’s will on the enemy is the 

effective application of military force against appropriate targets to achieve 

tactical objectives.  Several aspects of warfare complicate the effective use of 

military force on the battlefield including friction, uncertainty, fluidity, disorder, and 

complexity [1].  In early warfare, military units sought to minimize these effects by 

organizing into large tightly controlled formations and confronting each other on 

an open battlefield.  Horns, drums and flags served as effective means of 

command and control.  As tactics evolved and technology improved, military 

units have become smaller and more dispersed, but significantly more lethal.  

Today, multiple radio nets are required to link maneuver units and headquarters 

to each other.   

In the midst of these difficulties, service men and women must make 

timely targeting decisions on imperfect information, or risk being shot first.  

Targeting is defined as the process of selecting and prioritizing targets and 

matching the appropriate response to them, considering operations requirements 

and capabilities [2].  One key to targeting, is the ability to sense potential targets 

and engage them with accurate fire, preferably at the maximum range tactically 

possible.  The maximum effective ranges of the most lethal weapon systems, 

however, have long out-ranged the unaided human eye.  To assist them in the 

targeting and engagement process, service members deploy with various 

sensors and imaging devices.  Service members must act on the information 

gathered from these sensors and imagers when making engagement decisions.  

Far too often, these decisions result in friendly fire. 



Joint Publication 1-02 defines friendly fire as a casualty circumstance 

applicable to persons killed in action, or wounded in action, mistakenly or 

accidentally, by friendly forces actively engaged with the enemy, who are 

directing fire at a hostile force, or what is thought to be a hostile force [2].  

Friendly fire has been a problem since the advent of warfare.  Table 1 shows 

American friendly fire casualty figures for the last century.  The figures are 

calculated using this formula;  

American Casualties caused by Friendly Fire

Total American Casualties
 

 

Conflict Source Data Fratricide Rate 

World War I Besecker Diary (Europe) 10% Wounded in Action 

World War II Bouganville Study 12% Wounded in Action 

16% Killed in action 

Korea 25th Infantry Division 7% Casualties 

Vietnam WEDMT¹ (autopsy) 

WEDMT (autopsy) 

WEDMT 

14% Killed in Action (rifle) 

11% Killed in Action (Fragments) 

11% Casualties 

Just Cause US Department of Defense 5–12% Wounded in Action 

13% Killed in Action 

Desert Storm U.S. Department of Defense 15% Wounded in Action 

24% Killed in Action 

 

Table 1.   Fratricide Rates in this Century’s Conflicts [From Steinweg]. 

U.S. military units deploy with the most sophisticated command, control, 

computers, communications and Intelligence (C4I) equipment of any modern 

military.  Its officers and enlisted are well trained in the tactical employment of 

these systems and military planning.  Yet, casualty figures from Operation Iraqi 
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Freedom show that 17 % of Americans killed in action or wounded in action were 

a result of friendly fire.  Why?  A partial answer to this question lies in how we 

distinguish between friend and foe on the battlefield, commonly known as combat 

identification. 

B. COMBAT IDENTIFICATION 

Combat identification (CID) is the process of attaining an accurate 

characterization of detected objects in the operational environment sufficient to 

support an engagement decision [2].  CID is an integral part of the target 

engagement process in order to ensure fire is directed at the enemy and not 

friendly or neutral entities. The shooter leverages every piece of combat 

information and intelligence available to aid in the process.  To aid in CID and 

target engagement, the more lethal weapon platforms in the U.S. military are 

typically outfitted with sophisticated target acquisition systems and imagers.  

Some of these systems include laser range finders, laser target designators, 

night vision devices (NVD) and thermal imagers.  One CID goal is to leverage 

these systems’ capabilities such that friendly forces can identify other friendly 

forces quickly and confidently, with minimal impact on standard operating 

procedures (SOP).  If achieved, such a solution gives the shooter valuable data 

during the targeting process that can potentially prevent a friendly fire incident.  

The U.S. military currently uses a system of devices called Joint Combat 

Identification and Marking System (JCIMS).  Combat Identification Panels, 

Thermal Identification Panels, and infrared beacons are the vehicle mounted 

JCIMS devices. 

1. Thermal Identification Panels and Combat Identification Panels 

TIP are two-sided devices with day-use international orange on one side, 

and thermal reflective tape on the other (Figure 1).  Hereafter, reference made to 

TIP implies it is in “thermal mode” with the thermally reflective tape facing out.  

Combat Identification Panels (CIP) are ground-to-ground CID devices that mount 



on the side of tactical vehicles.  CIP may be louvered or flat plates (Figure 2).  

Thermal Identification Panels (TIP) are air-to-ground CID devices that strap to 

the top, or other horizontal surfaces, of tactical vehicles.  Both CIP and TIP are 

designed to reflect away a portion of the heat radiated by the vehicle creating a 

relatively cool area on a relatively hot background. 

 

Figure 1.   Thermal Identification Panels [From The Canadian Infantry 
Association, Retrieved from www.ducimus.com]. 

 

Figure 2.   Combat Identification Panels [From Krause] 
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There are several critical requirements for optimum effectiveness of CIP 

and TIP.  First, service members must be trained to properly deploy CIP and TIP 

on their combat vehicles.  Coalition Combat Identification Advanced Technology 

Demonstration, BOLD QUEST 08, post exercise surveys show some 40% of 

Mounted ground troops felt that their CIPs training was inadequate [4].  Survey 

data also revealed significant confusion regarding TIP standard operating 

procedures (SOP) [4].  Confusion regarding proper employment of CIP/TIP is 

observed not only during training exercises, but among forward deployed troops.  

Figure 3 shows an improperly employed thermal identification panel on a supply 

truck in Haditha, IZ.  In addition to properly mounting CIP and TIP, the panels 

must be kept clean for maximum effectiveness.  Panel visibility range through 

imagers is reduced by up to 50% when the panels are dirty [4].  

 

Figure 3.   Improperly Employed TIP, Haditha, IZ [From Marine Corpse 
Systems Command, Force Protection Office] 

Next, service members must train to search for, and recognize, the 

signature of CIP and/or TIP equipped vehicles through thermal imagers as part of 

the targeting process.  At Bold Quest 08, only one third of the surveyed pilots 

stated that they searched for TIPs using Forward Looking InfraRed (FLIR), 

thermal imagers, daylight electro-optics (EO), or the naked eye as a routine part 

of the ground target identification process [4].  Survey data shows the TIP 

maximum observable range is pilot dependent ranging from under 4 km to more 
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than 5 km [4].  Beyond 5 km, where most air-to-ground engagements are 

initiated, TIPs cannot be used to reliably identify friendly vehicles, greatly 

reducing the panels military utility.  This appears to be the primary reason most 

pilots do not search for TIP as a routine part of the ground target identification 

process. 

In addition to the human factors outlined above, CIP and TIP have several 

inherent vulnerabilities.  Again, CIP and TIP are “always on” devices, intended to 

create a recognizable signature when viewed through a thermal imager.  The 

goal of force protection and operational security, on the other hand, is to 

minimize friendly battlefield signatures in order to avoid observation by the 

enemy, in direct contrast to the conditions required for CIP to be visible.  The 

fundamental problem with passive device solutions, like CIP and TIP, is that if 

friendly forces can obtain a positive ID on a friendly vehicle, so can a properly 

equipped enemy.  Several threat countries employ thermal imagers and night 

vision devices [3].  From left to right, Figure 4 shows: Chinese Z-9WA night 

attack helicopter with day/night observing and tracking unit, Iranian-manufactured 

thermal weapon sight employed on the Zulfiqar Iranian main battle tank, and a 

Hezbollah Insurgent equipped with “Takavar” night vision monocular sight.  Given 

the proliferation of NVD and thermal imagers, it a safe assumption that the 

enemy will have a capability.  Post exercise surveys from JCIMS opposing forces 

(OPFOR)OPFOR Exploitation Assessment URGENT QUEST 05 show that 50% 

of OPFOR used CIP to identify blue forces (BLUFOR) during night missions 

while a staggering 90% of OPFOR used CIP to identify BLUFOR During Day 

missions [5]. 

 



 

Figure 4.   Threat Imaging Capabilities [From Cline] 

Another fundamental problem with CIP and TIP is the maximum 

observable range.  Several field experiments show TIP maximum observable 

range as about 4–5 km and CIP maximum observable range of about 2 km when 

viewed through a thermal imager under ideal conditions.  Under adverse weather 

conditions like rain, fog, or dust the maximum observable range is significantly 

reduced [4].  The maximum effective range of many ground-to-ground weapon 

systems that utilize thermal imagers for CID, is significantly greater than the 

maximum observable range of CIP.  The problem is even worse in the air-to-

ground mission area.  Targeting and target engagement can take place at ranges 

of well over 10 nautical miles (nm).  Significantly higher observable range is 

required for the panels to have any military utility in the air-to-ground mission 

area.  Finally, CIP and TIP require a significant amount of surface area when 

properly outfitted on a tactical vehicle.  Since tactical vehicles come in different 

shapes and sizes, there is no standard mounting kit for the panels.  As a result, 

every vehicle’s signature looks different through thermal imagers, further 

complicating the shooter’s ability to rapidly ID friendly forces. 

2. Infrared Beacons 

The vehicle-mounted IR beacon is a device that emits a flashing near-

infrared (NIR) signature visible (Figure 5).  The IR beacon’s emission is visible 

through NVD but invisible to the naked eye and through thermal imagers, 
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  The IR-14 has the same 

emission pattern as the vehicle-mounted IR beacon. 

Figure 5.   Vehicle-Mounted Infrared Beacon [From Krause] 

therefore only visible during night operations.  When turned on, the beacon emits 

a flashing 880 nm IR pulse with a period of 1.3 seconds and pulse width of 20 

milliseconds.  The IR-14 Pheonix Jr. is a smaller IR beacon powered by a single 

9-volt battery issued to individual troops (Figure 6).

 

 

Figure 6.   Pheonix IR Beacon [From Ni ystems, Retrieved from 
www.nightvisionsystems.com] 

ght Vision S

During BOLD QUEST 07, Pheonix beacons were issued to about half of 

the dismounted troops, while nearly all vehicles were equipped with an IR 

beacon.  Survey data show several participants were concerned with a lack of 

SOP for IR beacon usage [5].  Seventy-five percent of pilots did not view IR 

beacons as part of their target engagement process and reported maximum 

observable ranges from significantly less than 2000 m to greater than 5000 m [5].  

Twenty-four percent of the OPFOR claimed to have viewed IR beacons using 
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 an OPFOR troop, “follow the blinking lights,” summarized the 

point w

in 

order to identify us.  We must do better to protect our service men and women. 

C. 

 major 

subsys

BRA GOLD 07, VMIFF was successfully interrogated at a 

distance of 12 nm. 

 

NVGs at some point in the exercise [5].  During the JCIMS OPFOR Exploitation 

Assessment 05 OPFOR commented that BLUFOR IR lights routinely revealed 

vehicle positions with a staggering 85 % of the OPFOR indicating that the 

presence of IR lights enabled them to engage BLUFOR [6].  One anecdotal 

comment from

ell [6]. 

In summary, CIP, TIP and IR beacons require proper training in both 

employment and signature recognition to maximize effectiveness.  Even with 

proper training, common battlefield conditions such as rain, fog, and dust can 

significantly degrade CIP/TIP effectiveness.  Even under optimal conditions, 

these devices are not observable at ranges required for CID in many air-to-

ground target engagement scenarios.  Due to the “always on” nature of the 

devices, a properly equipped enemy can observe any of these JCIMS devices 

A NEW APPROACH TO COMBAT IDENTIFICATION 

Given the high impact of friendly fire incidents and the demonstrated 

limitations of current CID systems, a new approach is clearly needed.  The 

Vehicle Mounted Identification Friend or Foe (VMIFF) Generation II (Gen II) is a 

device designed at the Naval Postgraduate School (NPS) (Figure 7) [7].  VMIFF 

is a triggered device that remains covert unless illuminated by a friendly laser 

target designator or laser range finder.  VMIFF Gen II consists of two

tems, a photo receiver and a NIR light emitting diode (LED) array. 

The VMIFF receiver consists of four photodiodes, one on each face of the 

device, and associated circuitry.  In order to initiate a response from VMIFF, the 

receiver requires a recognized input signal.  VMIFF will not respond to steady 

state lasers.  At CO



 

Figure 7.   VMIFF Generation II [From Williams] 

The current emitter consists of four banks of 12 NIR LEDs each.  When 

the proper signal is received, all four banks blink, creating an omni-directional 

signal at approximately 3 Hz for 2 seconds with a 50% duty cycle.  Once the 

emission is complete, VMIFF goes back to being completely covert, waiting for 

the next friendly laser illumination.  At COBRA GOLD 07, VMIFF was 

successfully observed at about 16 nautical miles.  

VMIFF offers several advantages over the current CID devices discussed 

above.  First, VMIFF is covert unless interrogated by a friendly laser, providing an 

instantaneous response to the shooter when illuminated by a target laser 

designator or range finder.  As a result, the enemy cannot exploit VMIFF as 

easily as the legacy marking systems.  Second, VMIFF is triggered by the lasers 

already part of target engagement procedures, thus requiring minimal change to 

existing SOPs.  Because the same VMIFF can be mounted on any piece of 

rolling stock, its signature is standardized, making identification of friendly 

vehicles much easier. 

VMIFF Gen II’s major limitation is that it is only visible at night using NVD.  

The device is not visible through thermal imagers used by many shooters during 

the target engagement process.  In order to be visible through thermal imagers 
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for both day and night operation, a thermal emitter must be added.  The purpose 

of this thesis is to evaluate commercially available and cost-effective possibilities 

for creating such a signature. 

The goal of this thesis work is to procure commercially available sources 

of MWIR radiation, and evaluate them for suitability in VMIFF applications.  At the 

conclusion of this research, a design for VMIFF Gen III with integrated MWIR 

response is proposed.  At the outset, the following assumptions were made: 

1) The laser sensor and NIR LED bank from VMIFF Gen II could be used 

on VMIFF Gen III. 

2) A solid state design with no motors or moving parts is desired. 

3) The devices must be pulsed at approximately 1 to 3 hertz (hz) for 

distinguishability and recognizability. 
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II. MIDWAVE INFRARED RADIATORS  

Most military aircraft are equipped with tactical infrared imagers that are 

sensitive to photons in the wavelength range from 3–5 micrometers (microns).  

While infrared imagers sensitive to 8–12 micron photons exist, they are not 

typically deployed on the tactical platforms of interest.  While additional 

measurements were made using a single element 8–12 micron detector and 

microbolometer camera, this thesis focuses on the generation of a 3–5 micron 

MWIR signature.  Discussion of the types of infrared cameras deployed on 

different platforms is beyond the scope of this thesis. 

There are several approaches to generating a mid-wave IR emission for 

visibility in thermal imagers.  Three are discussed below: blackbody radiators, 

quantum cascade lasers, and IR light emitting diodes. 

A. PHYSICAL APPROACHES 

1. Blackbody Radiators 

The most straightforward way to create a mid-wave IR emission is to heat 

a material to high temperature.  An ideal blackbody perfectly absorbs all incident 

electromagnetic radiation.  If the body is in thermal equilibrium with its 

surroundings, it must emit the same amount of energy in the form of 

electromagnetic radiation.  The electromagnetic radiation emitted by an ideal 

blackbody is dictated by Planck’s radiation law: 

  
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kT

c h
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where  , I T  is the intensity as a function of wavelength and temperature in 

watts per unit area per wavelength,   is the wavelength in meters,  

is the speed of light, 

83x10  m/sc 
346261x10  J sh 6.   is Planck’s constant, 

 is Boltzmann’s constant, and T  is the temperature in Kelvin.  23807x101.3  J/Kk 
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An object in thermal equilibrium with its surroundings will absorb and emit equal 

amounts of electromagnetic radiation.  An object that is warmer than its 

surroundings will emit more radiation than it absorbs in order to move toward 

thermal equilibrium.  Figure 8 shows the spectral emission of an ideal blackbody 

radiator at 300 and 500 Kelvin (K). 

 

Figure 8.   Radiated Power per Unit Area Versus Wavelength for Two 
Radiators at 300K and 500K 

As the temperature of the blackbody increases, the peak emission 

wavelength becomes shorter. The peak emission wavelength can be determined 

by setting 0
dI

d
  and solving to obtain Wien’s displacement law: 

  3
max 2.808x10T m  K

For a given blackbody, the emission at a given wavelength always 

increases with increasing temperature.  Comparing the blackbody radiation 

curves in Figure 8, it is clear that as temperature increases, emission increases 

the most near the peak, and then less significantly at higher wavelengths.  The 

important point here is that emission at a given wavelength does not scale 

linearly with temperature.  To understand the spectral emission at a given 
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wavelength for two different temperatures, it is necessary to plot the blackbody 

radiation curve.  Eventually, if temperature is increased enough, the body will 

emit visible light, i.e., the sun, tungsten filament light bulbs, etc. 

To obtain the total power radiated per unit area, I  must be integrated over 

all wavelengths to obtain the Stefan-Boltzmann law: 

   4R T T  

where   is the unitless emissivity of the body and  is 

the Stefan-Boltzman constant.  The emissivity is an experimentally determined 

ratio of a real material’s emission divided by the emission of an ideal blackbody 

and is always less than one. 

 8 25.6704x10  W/ m K  4

For the VMIFF application, we are interested in maximizing the emission 

of photons having a wavelength between 3 and 5 microns.  Clearly, increasing 

temperature will increase the MWIR photon count, but to avoid observation with 

the naked eye, the device cannot emit any visible light.  To be recognizable and 

produce a distinguishable signature in the thermal imager’s view screen, the 

devices must be modulated to create a blinking signature.  This means the 

transient response of the blackbody source, affected primarily by device mass 

and thermal conductivities, will be of interest.  Finally, the efficiency of a 

blackbody source will always be limited by the fact that a significant amount of 

the power radiated will lie outside the desired 3–5 micron wavelength range. 

2. Infrared Light Emitting Diodes 

Semiconductors are materials with the proper number of electrons to 

exactly fill an outer electron shell.  When bonded as a solid, the allowed energy 

states form bands, with a filled valence band and an empty conduction band as 

the ground state.  The energy required for an electron to move from the valence 

band to the conduction band is called the band gap energy.  Semiconductors 

behave like insulators at absolute zero, 0 KelvinT  , because all charge carriers 

must be in their lowest energy state and are therefore bound to a specific atom in 
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the lattice.  As temperature increases, there is a finite probability that some of the 

charge carriers will gain enough energy to overcome the band gap and 

disassociate with its atom creating an electron-hole pair. 

Incident electromagnetic radiation can also generate electron hole pairs if 

the energy of a single photon is greater than the band gap energy.  In order to 

increase the number of a specific type of charge carrier, impurities are added to 

the semiconductor lattice.  This process is called doping and the energy required 

to liberate a dopant charge carrier is significantly less that the energy require to 

liberate a charge carrier from a semiconductor atom.  In either case, the charge 

of the sample has not changed, however the excited charge carrier is now free to 

move about the lattice and conduct electricity.  When an electron and hole are 

sufficiently close to one another, recombination will occur and the energy that 

was absorbed in the generation of the pair is released in the form of heat in the 

lattice or a photon.  To create desired electromagnetic radiation, light emitting 

diodes (LED) leverage the electron hole pair recombination, resulting in photon 

emission as a result of minority carrier injection in a diode structure. 

 

Figure 9.   Electron Hole Pair Generation and Recombination 
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Diodes are constructed by joining two pieces of oppositely doped 

semiconductor material, called p-type for positively doped and n-type for 

negatively doped.  When the diode is forward biased, charge carriers are injected 

into the region close to the interface where there is a very high probability of 

recombination.  In the case of LEDs, the dominate recombination mechanism will 

result in the creation of a photon.  The energy of the emitted photon is 

approximately equal to the band gap of the semiconductor: 

 
     1.24 1.24

=  or 
[ ]g

g g

hc hc
E h eV

microns E E eV
 

 
    microns  

In order to generate 3–5 micron wavelength photons, 

0.413  to 0.248 gE eV eV is required.  Table 2 shows the band gap energies for 

some common semiconductor materials [8]. 

Material Symbol 
Band gap (eV) @ 300K 

Silicon Si 1.11 

Germanium Ge 0.67 

Silicon carbide SiC 2.86 

Aluminum antimonide AlSb 1.6 

Gallium(III) phosphide GaP 2.26 

Gallium(III) arsenide GaAs 1.43 

Gallium(III) nitride GaN 3.4 

Gallium antimonide GaSb 0.7 

Indium(III) nitride InN 0.7 

Indium(III) phosphide InP 1.35 

Indium(III) arsenide InAs 0.36 

Cadmium telluride CdTe 1.49 

Lead(II) sulfide PbS 0.37 

Lead(II) selenide PbSe 0.27 

Lead(II) telluride PbTe 0.29 
 

Table 2.   Band Gap Energy of Common Semiconductors [From Streetman and 
Sanjay] 
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Semiconductors that have a band gap energy low enough to generate 

MWIR photons are generally very soft materials and unable to handle the current 

required to produce a usable amount of electromagnetic radiation.  LED light is 

nearly monochromatic as opposed to blackbody radiation, which produces 

photon of many wavelengths.  As a result, more of the emitted radiation will be 

usable than in a blackbody radiator. 

3. Quantum Cascade Lasers 

Quantum cascade lasers (QCL) are another device that can create 3–5 

micron wavelength photons.  Electron tunneling from one quantum well through a 

barrier to another quantum well is the photon generation mechanism in a QCL.  

The device consists of many alternating layers of semiconductor materials to 

create an alternating series of potential well/ barrier/ potential well/ barrier, etc. 

(Figure 10).  The material and thickness of each layer is selected based on band 

gap engineering in order that the device will generate photons of a specific 

wavelength.  Any free electrons in the device will quickly drop into the quantum 

wells in order to lower their energy.  The potential barrier is thin enough that the 

probability of an electron tunneling from one potential well to another is high.  At 

this point, no photons have been created. 

 
 

Figure 10.   Representation of QCL Semiconductor Layers [From Quimby] 

When a bias voltage is applied, a potential difference is created along the 

growth axis but the device will maintain the quantum well properties (Figure 11).  

Electrons injected into the left side of the device fall into the first potential well.  

The electron will occupy the ground state of the first potential well until it tunnels 
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through the barrier to the second well, which happens quickly because the barrier 

is designed to have a high probability of tunneling.  Once it arrives in the second 

well, it quickly decays to the ground state of the second well.  This small amount 

of energy lost by the electron creates the photon. 

Quantum cascade lasers can be designed to generate light with 

wavelengths from 3 to 160 microns [9].  Because the wavelength of the emitted 

photons depends primarily on the width of the quantum wells, they can be 

fabricated using more robust semiconductor materials than IR LEDs.  As a result, 

QCL can generate significantly more output power, as large as tens of watts, 

versus LED solutions.  QCL light is very nearly monochromatic due to the 

stimulated nature of the radiation. 

 

 
 

Figure 11.   Photon Generation in QCL [From Quimby] 

B. COMMERCIALLY AVAILABLE DEVICES 
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A comprehensive market survey was performed to identify commercially 

available MWIR sources using the approaches discussed in the beginning of this 

chapter.  The criteria for selection included cost, maximum irradiance, and 

modulation speed.  This section contains general information regarding the cost, 

physical design, and operating parameters of the different devices. 



1. Blackbody Radiators 

Three blackbody radiators were selected for testing, the Cal Sensors 

SVF360-8M3, ICX Photonics NL84ACC, and Hawkeye Technologies IR-50.  The 

devices used in this research all had Calcium Fluoride ( ) windows.  The 

basic operation of all three devices is the same: when a voltage is applied across 

the filament, a current is induced, the active element heats up and emits as a 

blackbody.  For circuit design purposes, the radiators behave like a simple 

resistive elements.  All devices claim to have low thermal mass enabling pulsed 

operation and high emissivity. 

2CaF

a. Cal Sensors SVF360-8M3 

The SVF360-8M3 is a 2-lead device in a standard TO-8 package 

that costs $86.00 per device, or less for large quantity orders.  The device leads 

extend  through the bottom of the can to a thin flat Nichrome foil filament with 

16.8 mm² of active area.  The plane of the foil is perpendicular to the window.  

The device has a parabolic reflector on both sides of the foil to direct the energy 

out of the device along the optical axis of the window.  The foil has an emissivity 

of .88   and operating temperature of 1000 K.  Exceeding this temperature will 

destroy the foil.  The device requires a heat-sink when operated at maximum 

recommended power.  The SVF360-8M3 operates at a peak DC input power of 

2.6 W which corresponds to an operating temperature of 1000 K. 

b. ICX Photonics NL84ACC 

The NL84ACC is a 8-lead device in a standard TO-8 package that 

costs $71.25 per device, or less for large quantity orders.  The device leads 

extend through the bottom of the can to a four Nichrome filaments with total 

surface area of 29 mm².  The filaments are mounted parallel to the window.  The 

filaments are ion-beam treated to raise the emissivity to 0.9   in the 3–5 micron 

wavelength region.  The operating temperature of the device is about 1050 K.  
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The SVF360-8M3 operates at a peak DC input power of 6 W, 1.5 W per filament. 

Exceeding this power will destroy the filaments.  The device requires a heat-sink 

when operated at maximum recommended power. 

c. HawkEye Technologies IR-50 

The IR-50 is a 3-lead device in a standard TO-5 package that costs 

$62.00 per device, or less for large quantity orders.  Two of the device leads 

extend  through the bottom of the can to a square, thin film resistor made of 

diamond-like carbon.  The active area of the resistive film is 2.9 mm².  The third 

lead is used to ground the can.  The planar surface of the emitter is parallel to the 

window.  The foil has an emissivity of .80   and an operating temperature of 

1020 K.  Exceeding this temperature will destroy the carbon film.  The device 

requires a heat-sink when operated at maximum recommended power.  The IR-

50 operates at a peak DC input power of 0.96 watts, which corresponds to an 

operating temperature of 1020 K. 

Table 3 shows input power, filament surface area, filament material, 

and filament operating temperature for the Cal Sensors, ICX, and IR-50 devices.  

The data was compiled for the device data sheets. 

 

  Input Power Collimator
Filament 

Surface Area 
Filament 
Material 

Operating 
Temperature 

Cal Sensors SVF360-
8M3 2 W Yes 16.8 mm² Nichrome 1000 K 

ICX Photonics 
NL84ACC 6 W No 29 mm² Nichrome 1030 K 
HawkEye 
Technologies 
IR-50 0.95 W No 2.89 mm² 

Porous 
Carbon 1020 K 

Table 3.   Specification Sheet Information for Cal Sensors, ICX, and IR-50 Devices 
[From Device Specification Sheets] 
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2. Infrared Light Emitting Diodes 

Ioffe Light Emitting Diodes in St. Petersburg, Russia has developed 

optically immersed LEDs that emit 3–4 micron wavelength photons.  The devices 

are in a threaded metal package with a positive and negative wire on the back of 

the package.  Optical immersion refers to the round silicon window designed to 

better couple the light generated by the LED to the atmosphere.  The maximum 

recommended current for operation at 1–3 Hz is 200 mA.  The device requires a 

heat-sink when operated at maximum recommended power.  Indium-gallium 

arsenide (InGaAs) and Indium arsenide-antimonide (InAsSb) hetrostructures are 

the semiconductor materials used in the LEDs.  The MWIR LEDs cost $72.00 per 

device. 

3. Quantum Cascade Lasers 

Daylight Solutions, Inc. offers several QCLs that emit in the MWIR.  The 

power of available lasers range from milli-watts to tens of watts.  The cost of 

these lasers range from $20,000 to $500,000, respectively.  Though QCLs are a 

very promising technology for VMIFF applications, they are restrictively 

expensive at this time, on the order of tens of thousands of dollars for output 

power on the order of milliwatts.  The biggest advantage to the use of a QCL 

over blackbody radiators and MWIR LEDs in VMIFF applications, is the 

generation of a specific wavelength determined by the geometry of the device.  

This, coupled with the directionality of the laser output, would result in 

observation at long range.  This key advantage means that the QCL cannot only 

be designed to a wavelength within the 3–5 micron atmospheric window, but to 

the wavelength that best excites the thermal imaging array.  This means that 

more of the output power is coupled to the imager increasing visibility and 

delectability.  In addition, there is no radiation outside the MWIR that might be 

detected by other battlefield sensors, reducing the enemies ability to detect 

VMIFF.  Due to the restrictive cost, a QCL was not purchased for this thesis 

work. 



III. SINGLE MICRORADIATOR EMITTER MEASUREMENTS 

A. TEST METHODOLOGY 

This chapter discusses single device measurements taken using single 

element detectors.  The devices were tested for maximum DC power irradiance, 

rise time, fall time, frequency response and off axis irradiance when driven at the 

maximum power recommended by the manufacturer.  The goal of this portion of 

the research was to establish a quantitative comparison of the fundamental 

operating characteristics of each device.  The performance data collected are 

critical to selecting the device that offers the most attractive balance of maximum 

observable range, cost, power consumption and transient characteristics for the 

VMIFF MWIR emitter design. 

1. Device Setup and Drive Circuit 

All the devices tested require a heat sink to operate at maximum power.  

Four by five inch aluminum heat sinks were fabricated for each device.  Each 

heat sink can house up to 12 devices in a three-device by four-device array 

(Figure 12).  For the single device measurements taken in this chapter, one 

device was mounted in the heat sink.  Metallic paste was used to improve 

thermal conductivity between the device and the heat sink. 

 

Figure 12.   Cal Sensors Panel With Devices 
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Most tactical vehicles use a 24-volt electrical system, consisting of multiple 

12-volt lead acid batteries in series and parallel.  All the circuits were built to 

operate on 12 or 24 volts DC using a lead acid battery bank.  In addition to 

demonstrating compatibility with vehicle electrical systems, this power decision 

made it easy to take the emitters to the field because no laboratory power 

supplies were required for operation. 

Based on the initial assumptions discussed at the end of Chapter I, a 

square-wave generating circuit was built to modulate the emitters.  The circuit 

was designed around a standard LM556 dual-timer chip (Figure 13).  The output 

of the circuit is a 0 to 12 V square-wave fully adjustable from 1 Hz to 15 Hz with 

adjustable duty cycle.  All experiments were done using 50% duty cycle.  15 Hz 

was selected as the upper frequency limit because most imagers operate at 30 

frames per second.  Potentiometer 1 (Pot 1) adjusts the frequency while Pot 2 

adjusts the duty cycle. 

 

Pot 1 

Pot 2 

Figure 13.   Square-wave Generating Circuit 
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The output of the square-wave generating circuit was applied to the gate 

of an IRF530 power MOSFET that switched the emitters on and off.  For circuit 

design purposes, the emitters were modeled as simple resistors.  When the gate 

of the MOSFET is positive, a current path is established between the drain and 

source and the radiator emits.  When the gate of the MOSFET is zero volts, no 

current flows from the drain to the source and the emitter is off (Figure 14).  An 

additional resistance was added to the device resistance.  The amount of 

resistance added was chosen such that the emitter power was at about the 

maximum recommended by the manufacturer.  In order to improve overall power 

efficiency, future circuit designs should eliminate the additional resistance and 

include a dc to dc converter circuit.  Pot 3 is a simple thumb wheel pot used to 

enable or disable the square-wave at the gate.  It was used as the emitter “on/off” 

switch. 

12 V

Pot 3 

 

Figure 14.   Panel Switching Circuit 
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Two detectors were used to characterize the devices.  A liquid nitrogen 

cooled, single-element Cincinnati Electronics Indium Antimonide (InSb) detector 

was used for characterization in the 3–5 micron wavelength regime (Figure 15, 

Right).  A liquid nitrogen cooled, single-element Infrared Associates Mercury-

Cadmium Telluride (MCT) detector was used for characterization in the 8–12 

micron wavelength regime (Figure 15, Left).  The spectral response curve for the 

InSb detector is not available.  Figure 16 shows the MCT detector spectral 

response curve.  A band-pass filter was used to block wavelengths shorter than 8 

microns and longer than 13.5 microns.  Figure 17 shows the response curve of 

the filter.  No additional optics were used to focus the IR radiation. 

 

 

Figure 15.   Single Element 8–12 µm (left) and 3–5 µm (right) Detectors 
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Figure 16.   MCT Detector Spectral Response [From Detector Specification 
Sheet] 
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Figure 17.   8–13.5 μm Band-Pass Filter Transmittance [From Filter 
Specification Sheet] 
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Initial measurements where made using the two circuits described above.  

The detector output voltage was read, displayed, and saved using an 

oscilloscope.  The collected data were saved on a 3.5 inch floppy disk and 

transferred to a computer for analysis.  There are several problems with this set-

up.  First, data capture and transfer to computer were very time consuming and 

cumbersome.  Second, controlling turn on and turn off with pot 3 made it nearly 

impossible to capture emitter behavior during turn on and turn off.  The transient 

data are very important for VMIFF design purposes because the emitter bank 

should turn on fast when interrogated for rapid recognition.  The emission should 

also turn off fast to reduce the likelihood of enemy observation.  More 

sophisticated computer-controlled initiation and data capture were required.  In 

order to gather the required data, a LabVIEW program was written to control the 

circuit and data capture. 

2. Bench Setup 

In the second-generation set-up, LabVIEW initiated a two-second long, 9 

mA current pulse from a Keithley 220 Programmable Current Source.  Note, the 

Keithley is programmed to turn the current off after two seconds.  LabVIEW 

provided the initiation pulse to the Keithley only.  The current was placed on the 

non-inverting input of a LM311 comparator with a 1 kΩ pull down resistor to 

create 9 V on the input (Figure 18).  The voltage divider across which the square-

wave was applied increased the low voltage so that the signal varied between 6 

and 12 V.  This new square-wave was applied to the inverting input of the 

comparator.  When the Keithley output current was zero, the output of the 

comparator was zero.  When the Keithley output current was 9 mA, the 

comparator output was a 0 to 12 V square-wave inverted from the original input.  

Note, the square-wave signal generating circuit operates independent of this 

circuit.  As a result, the square-wave generator was at an arbitrary point on the 

waveform when the Keithley current source initiated the two-second data 

collection window.  



 

Figure 18.   LabVIEW Interface Circuit 

LabVIEW was also used to capture and save the detector and emitter 

voltages.  It is important to collect both voltages so that the response curves can 

later be time shifted to align detector response from the different emitters.  

Hereafter, data collected by LabVIEW shall refer to the detector voltage unless 

specified.  Once the collected data are zeroed to eliminate voltage due to 

background radiation, the data are assumed to be a direct measurement of 

device irradiance in arbitrary units.  For the purposes of the laboratory 

measurements, the relative irradiance between devices is the important figure of 

merit, not absolute irradiance. 

A National Instruments NI USB-6211 digital to analog converter (DAC) 

was used to digitize the analog voltages.  The LabVIEW program took a total of 

four seconds of data at a 1 ms sample rate each run.  In chronological order, a 

sample run consisted of the following events:  First, LabVIEW collected 50 ms of 

data with the emitter off to establish the background signal baseline.  Next, 
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LabVIEW initiated the two-second pulse to drive the emitters and collected data 

with the emitter on, either dc or modulated by the square-wave.  Finally, 

LabVIEW continued to collect data for the remainder of the four second window 

capturing the cool-down behavior of the emitter.  Figure 19 shows the 

experimental bench setup.  The emitter panel and detector were mounted on an 

optical table to ensure proper alignment. 

 

Figure 19.   Experimental Bench Set-up 

B. 3–5 MICRON EMISSION CHARACTERIZATION 

The devices were characterized using the circuit and bench set-up 

described in Section A.  The distance between the emitter and detector was 10 

cm for all 3–5 micron measurements.  The frequency of the signal applied to the 

inverting input was varied between DC, 1 to 10 Hz in 1 Hz increments, and 15 

Hz.  SigmaPlot was used to graph detector voltage data.  Each data graph shows 

the detector response for one modulated frequency.  The DC response curve is 
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also included to show the peak irradiance at that particular frequency versus 

maximum device capability.  Figure 20 and Figure 21 show the Cal Sensors 

device 1 Hz and 3 Hz data, respectively. 

 

Figure 20.   Detector Output Versus Time for Single Cal Sensors Device, On-
Axis 

 

Figure 21.   Detector Output Versus Time for Single Cal Sensors Device, On-
Axis 
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On-axis, single-device, 3–5 micron response curves for each device are 

located in Appendix B.  Analysis of the results follows below. 

1. Maximum Irradiance at Constant Power 

The maximum, on-axis irradiance, with the device driven at the maximum 

DC power recommended by the manufacturer, was the first property studied.  

The sensor voltage curves for each device were plotted on the same graph for 

side-by-side comparison (Figure 22).  Figure 22 shows that the two-second 

driving window was sufficient to allow all devices to reach steady state operation.  

The maximum on-axis irradiance of the Cal Sensors device was the greatest and 

registered a sensor voltage of 1.015 V.  The maximum on-axis irradiance of the 

ICX device was second strongest at 0.835 V, 82% of the irradiance of the Cal 

Sensors device.  The IR-50 emits 6% of the radiation of the Cal Sensors device 

with a maximum sensor voltage of 0.061 V. 

 

Figure 22.   DC Response of IR-50, Cal Sensors, and ICX Devices 
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2. Device Rise and Fall Time 

In order to compare the rise times, the DC data for each device were 

imported to a SigmaPlot spreadsheet.  The data for each device were time 

shifted so that the device voltage turned on at time t=0.  Next, the normalized 

sensor voltages for each device were obtained by dividing the sensor voltage by 

the maximum voltage recorded for the data set.  The normalized signals for each 

device were then plotted on the same graph for comparison (Figure 23).  The 

normalized data show that the IR-50 reaches over 90% of its maximum 

irradiance in approximately 57 ms.  By comparison, the Cal Sensors device is 

second fastest requiring 372 ms to reach 90% of maximum irradiance.  Finally, 

the ICX device requires 606 ms to reach 90% of maximum Irradiance and is the 

slowest device. 

 

Figure 23.   Normalized Transient Rise Response of IR-50, Cal Sensors, and 
ICX Devices 
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Next, the short term transient sensor voltages for each device were plotted 

(Figure 24).  Due to the speed of the IR-50, it emits more 3–5 micron wavelength 

IR radiation than the Cal Sensors device for the first 99 ms if turned on 

simultaneously.  The IR-50 emission is greater than the ICX device for the first 

146 ms of operation. 

 

Figure 24.   Rise Time Response Comparison of IR-50, Cal Sensors, and ICX 
Devices 

The fall times were studied next.  The data are now time shifted so that 

the device voltage turned off at time t=0.  Figure 25 shows the normalized fall 

time data.  The data show that the IR-50 falls to 10% of its maximum irradiance 

in approximately 12 ms.  The Cal Sensors device shows the second fastest fall 

time requiring 117 ms to fall to 10% of maximum irradiance.  Finally, the ICX 

device requires 178 ms to fall to 10% of maximum Irradiance and is the slowest 

device. 
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Figure 25.   Normalized Transient Fall Response of IR-50, Cal Sensors, and 
ICX Devices 

Figure 26 shows the actual fall time sensor voltages for each device.  

Again, the speed of the IR-50 is evident.  The graph also shows the Cal Sensors 

device’s emission of 3–5 micron radiation is less than that of the ICX device 

within 29 ms of turn off.  The IR-50 has much less active filament area and a 

much better heat-sink, via the substrate that the filament is grown on, and 

therefore cools much faster.  The Cal Sensors device has less filament volume to 

heat and cool leading to faster response than the ICX device. 
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Figure 26.   Fall Time Response Comparison of IR-50, Cal Sensors, and ICX 
Devices 

3. Frequency Response 

The frequency response of the devices were studied next.  Data were 

taken with the square-wave frequency modulated from zero to ten Hz in one-Hz 

increments and fifteen Hz.  In general, VMIFF Gen III’s thermal emitter should 

have the highest possible irradiance during the “on” portion of the modulating 

signal for thermal imager observation at long distances.  During the off portion of 

the modulating signal, the thermal emitter should have the lowest possible 

irradiance so that no signature is visible through the thermal imager.  If the 

emitter has these basic characteristics at the desired modulating frequency, the 

emission will appear to flash in the thermal imager for easy recognition and 

discernability from other battlefield emissions. 
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a. Maximum Irradiance versus Frequency 

The maximum sensor voltage recorded during the four-second data 

capture is taken to be a measure of the device’s maximum irradiance.  Figure 27 

shows the maximum sensor voltage versus frequency for all three devices.  The 

Cal Sensors device has the highest maximum irradiance at all frequencies.  The 

normalized maximum sensor voltage for a given frequency is obtained by 

dividing the maximum sensor voltage detected by the maximum DC sensor 

voltage.  Figure 28 shows the normalized maximum sensor voltages versus 

frequency for the three devices.  The data show the IR-50 emits over 90% of its 

maximum DC irradiance at modulation frequencies of 10 Hz and below.  The Cal 

Sensors and ICX devices emit close to the same percentage of their maximum 

DC irradiance for a given modulating frequency.  The most important observation 

from this data is that the Cal Sensors and ICX devices emit 60% and 58%, 

respectively, of their maximum DC irradiance at 3 Hz modulation. 

 

Figure 27.   Maximum Irradiance Versus Frequency of IR-50, Cal Sensors, and 
ICX Devices 
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Figure 28.   Normalized Maximum Irradiance Versus Frequency of IR-50, Cal 
Sensors, and ICX Devices 

b. Minimum Irradiance versus Frequency 

Figure 29 shows the minimum detector voltage versus frequency 

for the three devices.  The IR-50 shows the best response with minimum detector 

voltage equal to 0 V out to 10 Hz.  The minimum detector voltage for the Cal 

Sensors device is significantly less that the ICX device below 10 Hz.  The 

normalized minimum irradiance data shows the ICX device and Cal Sensors 

devices fall to only approximately 7.5% and 3%, respectively, of their maximum 

DC irradiance by 3 Hz.  The higher the sensor voltage during the “off” portion of 

emission, the hotter the device will appear in a thermal imager.  The end result is 

a less dynamic range over which the imager pixel(s) will be excited decreasing 

recognizability. 
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Figure 29.   Minimum Irradiance Versus Frequency of IR-50, Cal Sensors, and 
ICX Devices 

 

Figure 30.   Normalized Minimum Irradiance Versus Frequency of IR-50, Cal 
Sensors, and ICX Devices 
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c. Delta Irradiance versus Frequency 

The difference between the maximum and minimum irradiance is 

referred to as delta irradiance.  This quantity is a measure of how much 

irradiance difference will be visible in a thermal imager between the device at its 

hottest point and its coolest point.  Larger delta means the thermal imager pixels 

excited by the emitter will vary more.  The 0 Hz data point is the detector voltage 

with the emitter driven with a constant current.  Figure 31 shows the Cal Sensors 

device has significantly more delta irradiance at all frequencies.  Figure 32 shows 

the Cal Sensors normalized delta irradiance slightly ahead of the ICX device.  

Again, due to its faster operating speed, the IR-50 maintained over 90% of its 

modulation depth for frequencies up to 10 Hz. 

 

Figure 31.   Delta Irradiance Versus Frequency of IR-50, Cal Sensors, and ICX 
Devices 
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Figure 32.   Normalized Delta Irradiance Versus Frequency of IR-50, Cal 
Sensors, and ICX Devices 

4. Off-Axis Irradiance 

Finally, off-axis irradiance was studied.  The detector was held fixed, while 

the angle of the panel was changed.  The distance between the center of the 

device window and the detector was held fixed at 5 cm for all measurements.  

The devices were driven by a two-second DC pulse for all measurements.  The 

figure of merit quoted in the device specification sheets for all three devices is the 

Full Width Half Maximum (FWHM).  FWHM is the angle between which the 

output irradiance is at least 50% of the maximum on-axis irradiance.  Figure 33 

shows the sensor voltage versus angle for the three devices.  Because the Cal 

Sensors device is collimated, its irradiance falls off most quickly as the panel 

angle increases corresponding to a FWHM of about 46°.  The ICX and IR-50 

data show a FWHM value of approximately 100°.  The experimental FWHM 

values are consistent with the values quoted in the specification sheets. 
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Figure 33.   Sensor Voltage Versus Half Angle for IR-50, Cal Sensors, and ICX 
Devices 

C. 8–12 MICRON EMISSION CHARACTERIZATION 

The single element MCT detector with band-pass filter was used to collect 

the devices’ 8–12 micron characteristic data.  Measurements were carried out 

exactly as described in section B of this chapter.  A DC pre-amplifier was used 

with the MCT detector.  There was a significant amount of drift in the detector 

output voltage.  The detector output voltage was shifted so that the first 50 ms, 

before the emitters where turned on was equivalent to zero volts.  It was 

assumed that the detector voltage drift was negligible during the four second 

measurement.  In addition, it is important to note that the transmittance of the 

calcium fluoride windows is very poor in the 8–12 micron wavelength range.  The 

8–12 micron wavelength emission observed was primarily emission from the 

calcium fluoride window which was heated by the filament.  At the time of this 

research, devices with window materials transparent to 8–12 wavelength LWIR 
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were at least 4 times as expensive and devices with calcium fluoride windows.  

For better response in the 8–12 micron wavelength regime than what is reported 

here, a window that is more transparent to these wavelength should be used.  

Nevertheless, with the wide availability of 8–12 micron, room-temperature, micro-

bolometer cameras, the data are relevant.  The distance between the emitter and 

detector was 3.5 cm for all 8–12 micron measurements unless otherwise noted. 

1. Maximum Irradiance at Constant Power 

On-axis irradiance with the device driven at the maximum DC power for 

the three devices is shown in Figure 34.  The Cal Sensors and ICX device reach 

comparable maximums but the ICX device takes longer to reach the maximum.  

The graph suggests that the ICX device may have slightly higher emission if 

driven with a DC current for longer than two seconds.  This data point was not 

obtained because the VMIFF response will be about 2 seconds in duration or 

shorter.  The maximum on-axis irradiance of the Cal Sensors device was the 

greatest and registered a sensor voltage of 4.30 V.  The maximum on-axis 

irradiance of the ICX device was approximately equal at 4.26 V.  The IR-50 emits 

10% of the radiation of the Cal Sensors device with a maximum sensor voltage of 

0.43 V. 

 

Figure 34.   DC Response of IR-50, Cal Sensors, and ICX Devices 
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2. Device Rise and Fall Time 

As in section B of this chapter, the data for each device were time shifted 

so that the device voltage turned on at time t=0.  The normalized signals for each 

device are plotted in Figure 35.  The normalized data shows that the IR-50 

reaches over 90% of its maximum irradiance in approximately 127 ms.  By 

comparison, the Cal Sensors device is second fastest requiring 315 ms to reach 

90% of maximum irradiance.  Finally, the ICX device requires 438 ms to reach 

90% of maximum irradiance and is the slowest device. 

 

Figure 35.   Normalized Transient Rise Response of IR-50, Cal Sensors, and 
ICX Devices 

Figure 36 shows the short-term transient sensor voltage for each device.  

The time required for the filament to heat the window is the dominant effect 

controlling the response.  It is assumed that the thermal mass of the Calcium 

Fluoride window is approximately the same for the three devices.  The IR-50 

filament still heats the fastest, but can only heat the window slightly faster than 

the Cal Sensors or ICX devices.  This is because the Cal Sensors and ICX 
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devices operate at significantly higher input power therefore heat the window, 

and the can in general, more quickly.  Again, the Cal Sensors device has more 

emission than the ICX device initially but both emissions are approximately 

equivalent at the end of the two-second on time. 

 

Figure 36.   Rise Time Response Comparison of IR-50, Cal Sensors, and ICX 
Devices 

The fall times are discussed next.  Figure 37 shows the normalized fall 

time data.  The data show that the IR-50 falls to 10% of its maximum irradiance 

in approximately 73 ms.  The Cal Sensors device requires 421 ms to fall to 10% 

of maximum irradiance.  Finally, the ICX device requires 804 ms to fall to 10% of 

maximum Irradiance and is the slowest device.  The IR-50 has much less active 

filament area and a much better heat-sink, via the substrate that the filament is 

grown on, and therefore cools much faster.  Additionally, the IR-50 operates at 

significantly less input power than either the Cal Sensors or ICX devices 

generating less residual heat in the device.  These factors combine to make the 

IR-50 significantly faster at cooling down. 
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Figure 37.   Normalized Transient Fall Response of IR-50, Cal Sensors, and 
ICX Devices 

Figure 38 shows the actual fall time sensor voltages for each device.  

Again, the speed of the IR-50 is evident.  The graph also shows the ICX device 

has a significantly longer 8–12 micron wavelength emission tail.  A long tail with a 

significant amount of emission could equate to a residual glow when viewed 

through a thermal imager.  Chapter IV contains further discussion of this issue. 

3. Frequency Response 

a. Maximum Irradiance versus Frequency 

Figures 39 and 40 show the maximum sensor voltage and 

normalized maximum sensor voltage versus frequency, respectively, for all three 

devices.  The Cal Sensors device has the highest maximum irradiance at all 

frequencies.  The data show the IR-50 emits over 90% of its maximum DC 

irradiance at all modulation frequencies.  The Cal Sensors device emits slightly 
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more 8–12 micron radiation than the ICX device for modulating frequencies less 

than 7 Hz.  The Cal Sensors and ICX devices emit 85% and 78%, respectively, 

of their maximum DC irradiance at 3 Hz modulation.  The increased variability, 

compared to the 3–5 μm response, is likely due to drift behavior in the DC pre-

amplifier used with the MCT detector. 

 

 

Figure 38.   Fall Time Response Comparison of IR-50, Cal Sensors, and ICX 
Devices 
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Figure 39.   Maximum Irradiance Versus Frequency of IR-50, Cal Sensors, and 
ICX Devices 

Figure 40.   Normalized Maximum Irradiance Versus Frequency of IR-50, Cal 
Sensors, and ICX Devices 
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b. Minimum Irradiance versus Frequency 

Figures 41 and 42 show the minimum detector voltage versus 

frequency for the three devices.  The IR-50 shows the best response with 

minimum detector voltage close to 0 V out to 10 Hz.  The minimum detector 

voltage for the Cal Sensors device is less that the ICX device below 10 Hz.   

 

Figure 41.   Minimum Irradiance Versus Frequency of IR-50, Cal Sensors, and 
ICX Devices 
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Figure 42.   Normalized Minimum Irradiance Versus Frequency of IR-50, Cal 
Sensors, and ICX Devices 

c. Delta Irradiance versus Frequency 

Delta Irradiance versus frequency is plotted for all three devices in 

Figure 43.  The data show the Cal Sensors device has significantly more delta 

irradiance at all frequencies.  From Figure 44, the Cal Sensors normalized delta 

irradiance slightly greater than the ICX device.  Again, due to its faster operating 

speed, the IR-50 maintained over 90% of its modulation depth for frequencies up 

to 10 Hz.  Interestingly, the lower delta irradiance observed with the 8–12 micron 

detector is due mainly to the minimum irradiance increasing with modulating 

frequency as opposed to observations with the 3–5 micron detector where lower 

delta irradiance was primarily due to decreasing maximum irradiance with 

increasing modulating frequency. 
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Figure 43.   Delta Irradiance Versus Frequency of IR-50, Cal Sensors, and ICX 
Devices 

 

Figure 44.   Normalized Delta Irradiance Versus Frequency of IR-50, Cal 
Sensors, and ICX Devices 
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D. SUMMARY OF SINGLE DEVICE MEASUREMENTS 

The IR-50 is significantly faster than the Cal Sensors and ICX devices, 

maintaining most of its maximum modulation depth for all frequencies tested.  

The small active filament area and substrate heat sink are the primary reason for 

the IR-50’s speed.  The Cal Sensors device is modestly faster than the ICX 

device.  The Cal Sensors flat, thin filament has a smaller filament cross-sectional 

area than the ICX filament which means less filament mass to heat and cool.  

Additionally, the thin flat filament design gives more surface area per volume 

available to radiate.  Due to the collimator, the on-axis irradiance of the Cal 

Sensors device is significantly more than the ICX device in spite of operating at 

less than half the input power.  The cost per unit for all three devices are 

comparable.  Table 3 summarizes the experimental data. 

  

  
Cal Sensors
SVF360-8m3

ICX Photonics
NL84ACC 

HawkEye Technologies 
IR-50 

Max DC Irradiance 1 0.8 0.06 
Full Width Half Maximum 46° 100° 100° 
Input Power per device 2.5 W 6 W 0.95 W 

Input Power (48 devices) 120 W 288 W 45.6 W 
Rise Time (90%) 57 ms 372 ms 606 ms 
Fall Time (10%) 12 ms 117 ms 178 ms 

Modulation Depth (2 Hz) 0.78 0.59 0.07 
Cost per Device $86  $71.25 $62 

Table 4.   Summary of Single Device Experimental Data 

In Table 4, Max DC irradiance is normalized to the Cal Sensors irradiance.  Input 

power (48 devices) is the input power required to drive a four-sided (12 devices 

per side), solid-state solution.  Modulation depth is normalized to the Cal Sensors 

DC modulation depth. 

 



IV. TWELVE-EMITTER ARRAY MEASUREMENTS 

A. LABORATORY MEASUREMENTS 

Circuit boards were etched to electrically connect 12-devices and secure 

them to the heat sink.  The 12 ICX and Cal Sensors devices were connected in 

series and required 14.3 V and 20.1 V across all 12 devices, respectively.  Three 

IR-50 devices were connected in series for one leg.  Four legs were connected in 

parallel to form the 12-device circuit and required 20.1 V across the circuit.  The 

panels were tested for on-axis irradiance versus distance in the lab from 25 cm to 

4 m (Figures 45 and 46).  The Cal Sensors and ICX devices compared more 

closely than expected.  The IR-50 irradiance was about a decade less than the 

Cal Sensors and ICX irradiance. 

 

Figure 45.   Twelve-Device Array, 3–5 Micron On-Axis Irradiance Versus 
Distance 
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Figure 46.   Twelve-Device Array, 8–12 Micron On-Axis Irradiance Versus 
Distance 

B. CAMP PENDLETON FIELD TEST 

The arrays were field tested at Camp Pendleton on 15 May 2009.  The 

ICX and Cal Sensors panels where included in the testing.  The panels were 

tested in fixed and rotating configuration.  For the fixed configuration, the panels 

were aimed at the imager and modulated with a 1 Hz, 50% duty cycle square-

wave.  For the rotating configuration, the panels where driven with a DC current 

and rotated at 1 revolution/second effectively resulting in 1 Hz modulation. 

Several thermal imagers were used to view the panels including: the LAV-

25 imager, PAS-13B Thermal Weapon Sight, and an NPS 3–5 micron imager.  

The panels were not visible in the PAS-13B at any range (Figure 47).  It is 

unknown if the panels were not visible using the PAS-13B due to imager/panel 

limitation or operator malfunction.  The panels were visible in the NPS imager out 

to a range of 3000 m.  The NPS imager has a 20° optical lens with no optical 

zoom capability.  The images taken show one pulsating pixel. 
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Figure 47.   PAS-13B Thermal Weapon Sight [From Raytheon, Retrieved from 
www.raytheon.com] 

The LAV-25 thermal imager was used to view the panels during the day 

and night.  The thermal imager was capable of 10, 20 and 40 X optical zoom.  

Tables 4 and 5 show the day and night field test results, respectively.  The 

panels were viewed at arbitrary distances driven by the requirement to have line 

of sight between the imager and the panels and terrain limitations.  The panels, 

lead-acid battery bank, and driver circuit were placed in the back of an SUV and 

driven to each test distance.  The panel was stationary at each test sight, located 

in the back of the SUV with the back hatch opened. 

Both panels were clearly visible in all three magnifications out to 3000 

meters during the day.  From 3000 m to 4500 m the panels were difficult to see in 

10 times magnification but clearly visible in 20 and 40 times magnification.  Of 

note, the Marines observing the panels through the LAV-25 imager commented 

that the panels were easier to see when rotating. 
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      LAV 

Range (m) Emitter Mode 10X 20X 40X 

800/1700 both both Y Y Y 

3000 ICX Rot Y Y Y 

    Fixed Y Y Y 

  Cal Rot Y Y Y 

    Fixed Y Y Y 

3500 ICX Rot Y Y Y 

    Fixed Y Y Y 

  Cal Rot Y Y Y 

    Fixed Y Y Y 

4500 ICX Rot Y Y Y 

    Fixed Y Y Y 

  Cal Rot Y Y Y 

    Fixed Y Y Y 

Table 5.   Camp Pendleton Field Test Results- Day 

Due to the limited time availability of LAV-25, the night testing conducted 

at two distances (Table 6).  The first test was conducted at the furthest distance 

achievable on the range while the second test location was approximately the 

same location as the last day test.  At 5640 m range, the neither panel was 

visible in fixed mode.  The ICX panel was not visible using 10 times magnification 

and barely visible in 20 and 40 times magnification.  The Cal Sensors panel was 

not visible in 10 or 20 times magnification, and barely visible in 40 times 

magnification.  Surprisingly, the panels were less visible at 4500 m during the 

night than they were during the day.  This was probably due in part to the LAV 

and panel being at slightly different locations.  A small variation in the orientation 

of the panel can have a significant effect on panel visibility.  Another surprising 

data point was that the Cal Sensors panel was more visible in fixed mode than in 

rotating mode.  This data needs to be checked for reproducibility. 
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        LAV   

Range (m) Emitter Mode 10X 20X 40X 

4500 ICX Rot Y Y Y 

    Fixed Y Y Y 

  Cal Rot N Y Y 

    Fixed Y Y Y 

5640 ICX Rot N Y Y 

    Fixed N N N 

  Cal Rot N N Y 

    Fixed N N N 

Table 6.   Camp Pendleton Field Test Results- Night 

The main conclusion drawn from the lab panel tests and the Camp 

Pendleton field test is that a rotating panel with devices driven with a DC current 

is more visible at longer range than a fixed panel run with a pulsed current when 

viewed through tactical thermal imagers used by ground troops in the field. 



 58

THIS PAGE INTENTIONALLY LEFT BLANK 



 59

V. CONCLUSION 

A. EXPERIMENTAL RESULTS 

The experimental results for the single device and multiple device array 

measurements are summarized in Table 7 below.  These results form the basis 

for the VMIFF Gen III design recommendation. 

 

  
Cal Sensors 
SVF360-8m3 

ICX Photonics 
NL84ACC 

HawkEye Technologies 
IR-50 

Max DC Irradiance 1 0.8 0.06 
Full Width Half Maximum 46° 100° 100° 
Input Power per device 2.5 W 6 W 0.95 W 

Input Power (48 devices) 120 W 288 W 45.6 W 
Rise Time (90%) 57 ms 372 ms 606 ms 
Fall Time (10%) 12 ms 117 ms 178 ms 

Modulation Depth (2 Hz) 0.78 0.59 0.07 
Cost per Device $86.00  $71.25  $62.00 

Array visibility range (day) 3500–4500 m 3500–4500 m N/A 
Array visibility range (night) 4500 m 4500 m N/A 

Table 7.   Summary of Experimental Data 

In the table, max DC irradiance is normalized to the Cal Sensors irradiance.  

Input power (48 devices) is the input power required to drive a four-sided (12 

devices per side), solid-state solution.  Modulation depth is normalized to the Cal 

Sensors DC modulation depth.  Array visibility range is the maximum range that 

the LAV-25 thermal imager viewed the panel in 10-time magnification.  

To achieve a solid-state, four-sided VMIFF Gen III design solution, the 

microradiating device must have a FWHM angle of at least 90° so that at the 45° 

angle between faces VMIFF emission is sufficient for visibility at the same range 

as viewed on the optical axis as one of the faces.  This eliminates the Cal 

Sensors device as a possibility for use in a four-sided solid-state solution.  Since 

the IR-50 does not produce the irradiance required to obtain the desired 

observable range, the ICX device is the most suitable.  The ICX device’s 



modulation depth is significantly reduced when modulated faster than 1 Hz.  

Based on data collected and field experimentation conducted at Camp 

Pendleton, a solid-state design solution visible beyond 4.5 km would require in 

excess of 12 devices per face.  Based on experimental findings and anecdotal 

comments during the Camp Pendleton field test, a rotating design solution 

appears more feasible at this time. 

B. VMIFF GENERATION III DESIGN RECOMMENDATION 

A rotating design solution is recommended for VMIFF Gen III thermal 

signature generation.  A rotating solution has several advantages over a non-

rotating solution.  First, devices can be mounted on one face giving maximum 

output power in a single direction.  Second, the devices evaluated in this thesis 

are designed for applications that require modulated emission.  Rotating the 

panel accommodates the use of DC emitters which typically have more on axis 

irradiance than the pulsable emitters.  As an example, the specification sheet for 

Cal Sensors SA10510-8M2 , the DC version of the pulsable Cal Sensors device 

evaluated in this research, shows 2.5 times the on-axis DC irradiance as the 

pulsable device for approximately the same input power. 

Mounting 48 DC devices on a single face should increase the maximum 

observable range by a factor  4 2.5 10 3.16    achieving a new maximum 

observable range of 4.5 km * 3.16 = 14 km or 8.8 miles, a significant 

improvement over legacy JCIMS devices and providing a day and night capability 

via the imager used in most air-to-ground targeting. 

VMIFF Gen III’s thermal emission will provide immediate feedback to the 

shooter, identifying the vehicle as friendly with no requirement for new equipment 

to be added to aircraft.  Compared to legacy JCIMS devices, VMIFF Gen III is 

less exploitable by the enemy since it is covert unless interrogated by a friendly 

target laser designator or range finder. 
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As the Commandant of the Marine Corps, General James Conway has 

stated, “Shame on us if we continue to kill our young people because we haven’t 

developed something that either “beeps” or “squawks,” or sends out a 

transmission or something that tells our troops, “oops, that’s a friendly vehicle”.”  

The capability the General is referring to is available now in VMIFF Gen II.  This 

thesis work demonstrates that a next generation VMIFF is possible that provides 

a comparable thermal capability for day as well as nighttime fratricide mitigation. 
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APPENDIX A DEVICE SPECIFICATION SHEETS 
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APPENDIX B 3–5 MICRON FREQUENCY RESPONSE 

A. CAL SENSORS SVF360-8M3, SINGLE-DEVICE, ON AXIS FREQUENCY 
RESPONSE 
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B. ICX PHOTONICS NL84ACC, SINGLE-DEVICE, ON AXIS FREQUENCY 
RESPONSE 
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C. HAWKEYE TECHNOLOGIES IR-50, SINGLE-DEVICE, ON AXIS 
FREQUENCY RESPONSE 
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APPENDIX C 8–12 MICRON FREQUENCY RESPONSE 

A. CAL SENSORS SVF360-8M3, SINGLE-DEVICE, ON AXIS FREQUENCY 
RESPONSE 
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B. ICX PHOTONICS NL84ACC, SINGLE-DEVICE, ON AXIS FREQUENCY 
RESPONSE 
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C. HAWKEYE TECHNOLOGIES IR-50, SINGLE-DEVICE, ON AXIS 
FREQUENCY RESPONSE 
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APPENDIX D OFF-AXIS SINGLE DEVICE IRRADIANCE 
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APPENDIX E PANEL ON-AXIS IRRADIANCE VS DISTANCE 
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